8,062 research outputs found

    Analytical method for designing grating compensated dispersion-managed soliton systems

    Get PDF
    This paper was published in Journal of Optical Society of America B and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/abstract.cfm?URI=JOSAB-21-4-706. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law. © 2004 The Optical Society.Peer reviewedPublisher PD

    Coarse-Grained MD Simulations Reveal Beta-Amyloid Fibrils of Various Sizes Bind to Interfacial Liquid-Ordered and Liquid-Disordered Regions in Phase Separated Lipid Rafts with Diverse Membrane-Bound Conformational States

    Get PDF
    The membrane binding behaviors of beta-amyloid fibrils, dimers to pentamers, from solution to lipid raft surfaces, were investigated using coarse-grained (CG) MD simulations. Our CG rafts contain phospholipid, cholesterol (with or without tail- or headgroup modifications), and with or without asymmetrically distributed monosialotetrahexosylganglioside (GM1). All rafts exhibited liquid-ordered (Lo), liquid-disordered (Ld), and interfacial Lo/Ld (Lod) domains, with domain sizes depending on cholesterol structure. For rafts without GM1, all fibrils bound to the Lod domains. Specifically, dimer fibrils bound exclusively via the C-terminal, while larger fibrils could bind via other protein regions. Interestingly, a membrane-inserted state was detected for a trimer fibril in a raft with tail-group modified cholesterol. For rafts containing GM1, fibrils bound either to the GM1-clusters, with numerous membrane-bound conformations, or to the non-GM1-containing-Lod domains via the C-terminal. Our results indicate beta-amyloid fibrils bind to Lod domains or GM1, with diversified membrane-bound conformations, in structurally heterogeneous lipid membranes

    Halo Sampling, Local Bias and Loop Corrections

    Full text link
    We develop a new test of local bias, by constructing a locally biased halo density field from sampling the dark matter-halo distribution. Our test differs from conventional tests in that it preserves the full scatter in the bias relation and it does not rely on perturbation theory. We put forward that bias parameters obtained using a smoothing scale R can only be applied to computing the halo power spectrum at scales k ~ 1/R. Our calculations can automatically include the running of bias parameters and give vanishingly small loop corrections at low-k. Our proposal results in much better agreement of the sampling and perturbation theory results with simulations. In particular, unlike the standard interpretation of local bias in the literature, our treatment of local bias does not generate a constant power in the low-k limit. We search for extra noise in the Poisson corrected halo power spectrum at wavenumbers below its turn-over and find no evidence of significant positive noise (as predicted by the standard interpretation) while we find evidence of negative noise coming from halo exclusion for very massive halos. Using perturbation theory and our non-perturbative sampling technique we also demonstrate that nonlocal bias effects discovered recently in simulations impact the power spectrum only at the few percent level in the weakly nonlinear regime.Comment: 25 pages, 14 figures; V2: significant revision including more details about halo exclusion and low-k noise. Conclusions unchange

    Measurement of Cosmic-ray Muons and Muon-induced Neutrons in the Aberdeen Tunnel Underground Laboratory

    Get PDF
    We have measured the muon flux and production rate of muon-induced neutrons at a depth of 611 m water equivalent. Our apparatus comprises three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons and 760 L of gadolinium-doped liquid scintillator for producing and detecting neutrons. The vertical muon intensity was measured to be Iμ=(5.7±0.6)×106I_{\mu} = (5.7 \pm 0.6) \times 10^{-6} cm2^{-2}s1^{-1}sr1^{-1}. The yield of muon-induced neutrons in the liquid scintillator was determined to be Yn=(1.19±0.08(stat)±0.21(syst))×104Y_{n} = (1.19 \pm 0.08 (stat) \pm 0.21 (syst)) \times 10^{-4} neutrons/(μ\mu\cdotg\cdotcm2^{-2}). A fit to the recently measured neutron yields at different depths gave a mean muon energy dependence of Eμ0.76±0.03\left\langle E_{\mu} \right\rangle^{0.76 \pm 0.03} for liquid-scintillator targets.Comment: 14 pages, 17 figures, 3 table

    Gravity and Large-Scale Non-local Bias

    Get PDF
    The relationship between galaxy and matter overdensities, bias, is most often assumed to be local. This is however unstable under time evolution, we provide proofs under several sets of assumptions. In the simplest model galaxies are created locally and linearly biased at a single time, and subsequently move with the matter (no velocity bias) conserving their comoving number density (no merging). We show that, after this formation time, the bias becomes unavoidably non-local and non-linear at large scales. We identify the non-local gravitationally induced fields in which the galaxy overdensity can be expanded, showing that they can be constructed out of the invariants of the deformation tensor (Galileons). In addition, we show that this result persists if we include an arbitrary evolution of the comoving number density of tracers. We then include velocity bias, and show that new contributions appear, a dipole field being the signature at second order. We test these predictions by studying the dependence of halo overdensities in cells of fixed matter density: measurements in simulations show that departures from the mean bias relation are strongly correlated with the non-local gravitationally induced fields identified by our formalism. The effects on non-local bias seen in the simulations are most important for the most biased halos, as expected from our predictions. The non-locality seen in the simulations is not fully captured by assuming local bias in Lagrangian space. Accounting for these effects when modeling galaxy bias is essential for correctly describing the dependence on triangle shape of the galaxy bispectrum, and hence constraining cosmological parameters and primordial non-Gaussianity. We show that using our formalism we remove an important systematic in the determination of bias parameters from the galaxy bispectrum, particularly for luminous galaxies. (abridged)Comment: 26 pages, 9 figures. v2: improved appendix

    Heisenberg-picture approach to the exact quantum motion of a time-dependent forced harmonic oscillator

    Get PDF
    In the Heisenberg picture, the generalized invariant and exact quantum motions are found for a time-dependent forced harmonic oscillator. We find the eigenstate and the coherent state of the invariant and show that the dispersions of these quantum states do not depend on the external force. Our formalism is applied to several interesting cases.Comment: 15 pages, two eps files, to appear in Phys. Rev. A 53 (6) (1996
    corecore